
1

Transactions in a Flash

Morgan Price

Scott Nettles

2

Flash Memory: Pros

• Solid-state memory

• Billions of dollars a year spent

• Persistent

• High-density

• Cheap

• Low latency

• High read bandwidth

3

Flash Memory: Cons

• Low write bandwidth

• Write once until explicitly erased

• Erased in large blocks

• Erasing is slow

• Limited lifetime

• High cost compared to disks

4

Key Issues

• Is Flash useful for transaction systems

• Where in the memory hierarchy
– Disk-like block-oriented device

– Byte-oriented device

– Directly accessed as user memory

5

Our Experiment

• Compare transaction logs using
– Disk

– Battery-backed DRAM

– Flash Memory

• Emulate Flash with DRAM, timers

• Simple, fair comparison
– No special Flash optimizations

6

Outline

• Background
– Transaction systems

– Flash memory

• Design & Implementation

• Experiments

• Performance Results

• Discussion

• Related & Future Work

7

Transactions

• Reliability

• Resiliency to machine failure
– Permanent storage

• Lots more to transaction systems besides
permanent storage
– Consistency

– Concurrent access

8

Permanent Storage

• Disks
– file-system

– raw partitions

• Protection from disk failure
– mirroring, RAID, tape

• Commit

– atomic update to persistent data

9

Fast Commit

• Store updates separately
– in an append-only log

– easy to append atomically

• When log fills
– Truncate & reuse

• Appending disk logs is relatively fast
– No seeks, just rotational delay

– Batch transactions to reduce latency

10

Batched Commits

• High disk latency for writes

• Reduced by batching commits
– Increases transaction throughput

– Increases transaction latency

• Requires lots of concurrency
– Great for database systems

– Maybe not for other transaction systems
• persistent heaps

• filesystem meta-data

11

Flash Logging

• Write-once

• Erase on truncation

• Automatic wear-leveling

• Low write latency

• High parallelism is feasible
– hardware failures should be very rare

– simpler than RAID

12

Flash Memory

• EEPROM, but with block erases

• 1 transistor per Flash cell

• Flash cells are 30% smaller than DRAM

• Lower cost per bit, eventually

• Intel has samples with >1 bit per cell
– Flash could be used for main memory

• Cheaper than battery-backed DRAM

13

Reading from Flash Memory

• Organized similarly to DRAM

• Flash chips with DRAM read interfaces

• Flash read performance matches DRAM

14

Writing to Flash Memory

• Slow: 6 µs versus 65 ns for read

• Each bit can change from 1 to 0
– but not back

– Writing Flash is an AND

• Very low latency compared to disk

• 163 KB/s per chip
– low bandwidth compared to disk

15

Erasing Flash Memory

• Erases a whole block: 64 KB

• Conditioning
– Forces each bit to 0 before erasing

– Slows down erase

– Raises lifetimes

• 600 ms latency

• 107 KB/s per chip

16

Flash Lifetimes

• Write and erase “stress” the chip

• Too-slow blocks have “failed”
– no data loss

• 100,000 erase cycles guaranteed

• 1,000,000 expected given
– wear-leveling

– retirement of (rare) failed blocks

17

Outline

• Background

• Design and Implementation
– The transaction system

– Using Flash as a transaction log

– Flash emulator

– Device drivers for different access models

• Experiments

• Performance Results

• Discussion

18

The Transaction System

• Recoverable Virtual Memory (RVM)

• Persistence on regions of virtual memory

• Assumes small persistent working set
– Must fit in physical memory for good

performance

19

RVM’s Transaction Log

• Circular disk-based log

• Truncation forces updates to actual data
– Big operation with high latency

– Can be asynchronous

20

Changes to RVM

• Small
– Added 500 lines of C out of 20,000 original

• Erase log after truncation

• Erase entire log on recovery

• Minor changes to device configuration

• Occasional in-place updates to meta-data
– Replaced with a mini-log

21

Flash Mini-log

• Data block has a log of values

• Commit appends value & mark

• To reclaim space in a block
– at least two data blocks

– third block points to valid data block

• Infrequently used
– performance is not a concern

22

Sidney

• Persistent heap for Standard ML (SML)

• Based on SML/NJ and RVM

• No changes to Sidney were needed

• No garbage collection
– Sidney doesn’t use the transaction log

– Flash & copying garbage collection

23

The Flash Emulator

• Emulates Flash with DRAM

• Reading Flash is fast
– RVM forces an unnecessary copy

• Delay writes and erases with timers

• Worst error was 30 ns/byte

24

Flash Configurations

• Vary the bandwidth
– as if varying the parallelism

• Emulate battery-backed DRAM
– just turn off delays

• Vary memory hierarchy

25

Flash as Kernel Memory

• Simple character device driver

• Emulates Flash with kernel memory

• Erase as ioctl

26

Flash as a Disk

• Another simple device driver

• Ignore overhead of in-place write semantics
– Writes are contiguous

• Ignore cost of I/O bus

• Faster writes through page buffers?

27

Outline

• Design & Implementation

• Experiments
– Benchmarks

– The Flash memory simulated

– The benchmarking environment

• Performance Results

• Discussion

• Related & Future Work

28

C++ Debit-Credit

• Closely based on TPC-B

• Does not scale database size by TPS
– Fixed at 100,000 accounts

• Each transaction modifies 448 bytes
– RVM writes 748 byte commit record

• Run 50,000 transactions and truncate

• 16 MB log fills twice

29

Sidney Debit-Credit

• Written in SML instead of C++

• Sidney implicitly logs writes
– 80 bytes sent to RVM

– 548 byte commit record

– 16 MB log fills once

30

SML/NJ Compiler

• Compiles 38 of its own files

• Stores data in persistent heap

• Commits after each file

• Lots of actual computation

• 15 KB transactions

31

Flash Memory Details

• Parallelism from 4 to 64
– Our memory controller goes up to 512-way

• Intel’s 28F016SV: 2M by 8 bits
– 65 ns reads, 6 µs writes (163 KB/s)

– 32 erasable blocks of 64 KB each: 107 KB/s

– Two 256-byte page buffers
• bulk writes at 465 KB/s

– Suspends slow operations for faster

32

Benchmarking Machine

• SGI Challenge-L
– 4 R4400 processors at 250 MHz

– 384 MB of main memory

– IRIX 5.3

• Disks rotate at 7200 RPM
– limits RVM’s disk log to 120 TPS

• ~6 MB/s of raw disk bandwidth

• Flash emulator delays accurate to 30 ns/byte

33

RVM Configuration

• RVM data stored in the EFS filesystem

• Disk-based log stored on a raw partition

• Log size fixed at 16 MB
– not including the mini-log

Truncation Update Overheads (µs)

0 200 400 600 800 1000 1200

8
16
32

Lo
g

S
iz

e
(M

B
)

34

Performance Evaluation

• Vary Flash parallelism
– Flash results in significant speedups

– Flash is bandwidth limited

– Disk is latency limited

• Vary the memory hierarchy
– Flash-disks suffer from fragmentation

– Kernel overheads are insignificant

35

• Flash log is bandwidth-limited

• Flash approaches battery-backed DRAM

C++ Debit-Credit Throughput

Disk

Flash-disk

Flash

DRAM

0

200

400

600

800

1000

1200

4 8 16 32 64

Parallelism (log-scale)

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

36

Why is the Flash-Disk Slow?

• Not due to kernel overheads
– Turn off cycle timers

– Battery-backed DRAM vs. fast Flash-Disk

– No difference

• Due to fragmentation
– Writes 67% more bytes per transaction

37

Using Page-Buffers
• Triples the write bandwidth (optimistically)

– Sector size < Parallelism * Page Buffer Size

TPS at 4-way parallelism

0 50 100 150 200 250 300

Flash-disk

Flash-disk with
Page Buffers

Flash

38

• Low peak throughput
– CPU overheads rise from 0.3 to 1.0 ms

Debit-Credit Throughput: C++ vs. Sidney

Sidney Disk

Sidney Flash

C++ Flash
Sidney
DRAM

0
100
200
300
400
500
600
700
800
900

4 8 16 32 64

Parallelism (log-scale)

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

39

Why isn’t Low-Parallelism
Sidney Slower?

• Big log bandwidth savings!
– Writes 548 vs. 748 bytes

• Flash requires compact logs

40

A Better Log Representation

• RVM has high header overheads
– 76 bytes per transaction

– 56 bytes per range modified

• Reasonable headers are 8 byte each!
Commit Record Sizes (bytes)

0 200 400 600 800

Optimized

Original Sidney
C++

41

• Big win for Sidney version

• C++ programmer could do the same

• RVM could compare the modified ranges

Debit-Credit with Optimized Headers

Ideal Disk

Sidney Flash

C++ Flash

Sidney
DRAM

0

200

400

600

800

1000

1200

4 8 16 32 64

Parallelism (log-scale)

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

42

Sidney Debit-Credit Overheads (ms)

0 2 4 6 8 10

Disk

4x

64x

Truncation Erase
Truncation Update
Commit I/O
Compute

43

• 670 ms of Compute time not shown
– Allows background truncation

SML/NJ Compiler Overheads (ms)

0 20 40 60 80

Disk

4x

64x

Truncation Erase
Truncation Update
Commit I/O

44

Outline

• Performance Results

• Discussion
– Flash Life-time

– How to Extend it

– Bigger Transactions

• Related Work

• Future Work

• Conclusions

45

Flash Life-time

1,000,000 erase cycles• 1,000,000 erase cycles
– Conservative given block retirement

• Block retirement by
– virtual to physical remapping

– sector remapping

• At least 13 MB of data at 8x

• (13 MB * 1,000,000 erases) /

 (748 bytes * 1000 TPS) = 200 days

46

Extending Life-time

• More Flash extends life
– at expense of price-performance

• Header optimizations
– Extend lifetime to at least 2 years

• Better hardware

• Bursty work-loads

• Actually reading the Flash

47

Log Compression

• Compiler log compresses by 2x
– Real application

– Would double flash lifetime

• Compress/Decompress runs at 1 MB/s

• Improves performance if
– Write&Erase Bandwidth < 1/2 MB/s

– Breaks even at 8x parallelism

48

Hybrid Logging

• For large transactions, want both
– low-latency (Flash)

– high-bandwidth (disk)

• Write-ahead logging
– standard optimization

– “speculatively” writes to disk

• Use Flash for the final commit write

49

Related Work: eNVy

• Persistent memory controller
– 256-bytes wide

– 2 GB of flash

• Allow in-place update via 64 MB of SRAM

• Differences of
– Data area

– Scale: eNVy supports I/O rates of 30,000 TPS

– Custom hardware, SRAM

• Wu & Zwaenepoel, in ASPLOS ‘94

50

Related Work: Filesystems

• Flash file-systems for mobile computers
– Low-power

– High durability

– Douglas et al, in OSDI ‘94

– Kawaguchi et al, in Usenix ‘95

51

Outline

• Related Work

• Future Work
– Real Hardware

– Improved Logger

– Redesigning Sidney to use Flash directly

• Conclusions

52

Real Hardware

• A simple memory controller
– The Intel 28F016XD has a DRAM interface

• New performance measurements
– Effect of background truncation on throughput

• Allow page-buffer use on small writes

• System cache structure
– Forcing persistent writes to Flash

– Flushing stale data upon erase

53

Improved Logger

• Header space optimizations

• Replace RVM logger
– Designed for disks

– CPU overhead for error checking

• Retirement of slowed blocks
– page-remapping

• Batched commits

54

Flash-Based Persistent Heaps

• Use Flash as bulk of main memory
– Eliminate the disk update overheads

• Most Sidney data is immutable

• Copying garbage collection
– append-only

– frees up large chunks to be erased

• Keep mutable data, young data in DRAM

55

Conclusions

• Flash memory is well-suited for transaction
logging.

• Flash logging is
– easy to implement.

– fast for small transactions

– can rival battery-backed DRAM for speed

56

Thanks to

• Satya and the CODA group for RVM

• Puneet Kumar for C++ Debit-Credit

• Mark Foster for help with memory systems

• Michael Wu for information about eNVy

